I MBA - I Semester Supplementary Examinations DECEMBER - 2024

QUANTITATIVE ANALYSIS FOR BUSINESS DECISION

Duration: 3 Hours

Max. Marks: 70

Note: 1. This question paper contains three Parts-A, Part-B and Part-C.

- 2. Part-A contains 8 short answer questions. Answer any <u>Five</u> Questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. Part-C contains one Case Study for 10 Marks.
- 5. All parts of Question paper must be answered in one place

PART - A

1. a)	Calculate the mean, median, and mode for the following data:				
	Data: 10, 15, 20, 25, 30, 35, 40.				
1. b)	Illustrate the characteristics of Skewness and Kurtosis.				
1. c)	Sketch the importance of probability concept.				
1. d)	Distinguish Binomial and Poisson distributions.				
1. e)	Classify Type I and Type II errors in hypothesis testing				
	procedure.				
1. f)	Mention the purpose of a paired t-test with suitable example.				
1. g)	Narrate the standard form of a Linear Programming Problem.				
1. h)	Extract the concept of Saddle Point in Game Theory.				

$\mathbf{PART} - \mathbf{B}$

			BL	CO	Max. Marks		
<u>UNIT – I</u>							
2.	a)	Discuss the significance of measures of	dispersi	ion in	5 M		
statistical analysis.							
	b)	Using the following data calculate Ka	rl Pea	rson's	5 M		
		coefficient of correlation between marks and	d the gr	ades.			

			Marks	40	35	50	60	55		
			Grades	4	3	5	6	5	-	
					0	R	1	1		
3.	a)	Based	on the	follo	wing c	lata, de	erive th	ne Reg	ression	5 M
		Equation.								
			X	2	4	6	8	9		
			Y	3	6	9	12	14		
	b)	The he	ights of	50 stu	dents a	re sumr	narized	as foll	ows:	5 M
	Mean = 160 cm, Standard deviation = 10 cm. Find the									
		coeffic	ient of s	kewne	ess if th	e media	n is 16	5 cm.		
					<u>UNI</u>	<u>Γ – ΙΙ</u>				
4.	a)	A bag	contain	s 3 re	ed balls	s, 5 blu	e balls	and 7	7 green	5 M
		balls. What is the probability of drawing?								
		i)	A red b	all						
		ii)	A ball t	nat is i	not blue	2.				
	b)							5 M		
	accidents in a week is 4, find the probability of exactly 2									
		accider	nts in a v	veek.						
					0	R				
5.	a)	-	obability			U				5 M
		are 10 trials, find the probability of getting exactly								
			esses usi	-						
	b)								5 M	
		distributed with a mean of 60kg and a standard deviation								
		of 5kg. What percentage of individuals weight between								
		55kg a	nd 65kg	?						
-		UNIT-III Explain the steps involved in hypothesis testing.							<u> </u>	
6.	a)	-				• 1		<u> </u>	6 1 0 0	<u>5 M</u>
	b)							5 M		
		packets shows a mean weight of 1.02kg with a standard deviation of 0.05kg. Test whether the machine produces								
				0				hine pi	oduces	
		packets	s of 1kg	at a 59	% signi	ticance	level.			

		OR					
7.	a)	Narrate the importance of paired sample tests in research	1 5 M				
		with appropriate examples.					
	b)	A random sample of size 25 has a mean of 15 and a	a 5 M				
		variance of 4. Test whether the population mean is 14 a	t				
		a 5% significance level.					
		<u>UNIT – IV</u>					
8.	a)						
		of A requires 3 hours of labor and 2 hours of machine					
		time. Each unit of B requires 4 hours of labor and 1 hours					
		of machine time. The labor and machine time					
		availability are 12 hours and 6 hours, respectively.					
		Formulate this problem as a linear programming	5				
	b)	problem.	n 5 M				
		b) Discuss the assumptions of the Simplex method in solving LPP.					
		OR					
9.	a)		1 5 M				
۶.	u)	variables in LPP.					
	b)						
	Maximize $Z = 3X+5Y$, subject to:						
	$X+Y \le 4, 2X+Y \le 6, X \ge 0, Y \ge 0.$						
		<u>UNIT – V</u>					
10.	a)	Describe the steps involved in solving a transportation	n 5 M				
		problem using the MODI method.					
	b)	Solve the following transportation problem using the	e 5 M				
		North-West Corner method:					
		Available					
		2 3 11 7 6					
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		<u>5 8 15 9</u> 10					
		Requirement 7 5 3 2					
		OR					

11.	a)	Use the dominance method to solve the following payoff matrix:					5 M
				Player	Player		
				B 1	B2		
			A1	4	6		
			A2	2	8		
	b)	Define and explain the dominance method in game					5 M
		theory with an example.					

PART –C

		IANI-C			
			BL	CO	Max. Marks
12.	pro ma wh cha pla Th uni 120 Qu	 mid-sized manufacturing company, ABC oduces two products: Product X and Product nagement wants to optimize production and d ile ensuring customer satisfaction. The compallenges in decision-making regarding nning, resource allocation, and market forecast e management collected the following sales its) for Product X in the last 12 m 0,150,130,140,160,170,150,140,130,135,145,15 estions: 1. Calculate the mean, median, and mode of the to summarize sales performance. 2. Compute the standard deviation to under variation in sales. 3. Analyze the skewness of the data to determine the correlation between monthly a expenses and sales performance using Karl method. 	et Y. listrib pany produ ing. s dat onthe 55. sales rstand nine	The pution faces action faces action a (in as, s) data d the if the tising	10 M